Carbon Nanohorns Modified with Conjugated Terthienyl/Terthiophene Structures: Additives to Enhance the Performance of Dye-Sensitized Solar Cells

نویسندگان

  • Daniel Iglesias
  • Pedro Atienzar
  • Ester Vázquez
  • María Antonia Herrero
  • Hermenegildo García
چکیده

A series of carbon nanohorns (CNHs) constituted by the aggregation of about 2000 individual conical graphene tubes (diameters from 2 nm to 5 nm and a length of 40-50 nm) that have been modified with dyes of two, three, or four terthienyl groups has been prepared by adsorbing the corresponding dye on the CNH. Persistent inks in o-dichlorobenzene (o-DCB) of these dye-CNH conjugates were obtained by laser irradiation of o-DCB suspensions of the dye-CNH solids. These inks were used in combination or not with N719 dye for the preparation of dye-sensitized solar cells (DSSC) of TiO₂. It was measured that the terthienyl dye with the largest conjugation deposited on the CNH additively increased the performance of an analogous TiO₂ cell from an efficiency of 4.07% to 6.24%. This result shows the potential of dye-modified CNHs as additives in the construction of more efficient DSSCs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Hydroquinone Dderivatives in Electrolytes on Dye-Sensitized Solar Cell Performance

New kinds of hydroquinone derivatives were synthesized and along with a azo dye applied as additives in the iodide/iodine redox electrolyte for dye-sensitized solar cells and their effect on the short-circuit photocurrent of dye sensitized solar cells was investigated. Addition of 0.05 M a hydroquinone derivative in the electrolyte comprising 0.5 M 1-methyl-3-propylimidazolium iodide (MPII) and...

متن کامل

Recent development of carbon nanotubes materials as counter electrode for dye-sensitized solar cells

Dye-sensitized solar cells present promising low-cost alternatives to the conventional Silicon (Si)-based solar cells. The counter electrode  generally consists of Pt deposited onto FTO plate. Since Pt is rare and expensive metal, nanostructured carbonaceous materials have been widely investigated as a promising alternative to replace it. Carbon nanotubes  have shown significant properties such...

متن کامل

Fabrication of dye sensitized solar cells with a double layer photoanode

Dye sensitized solar cell was fabricated from a double layer photoanode. First, TiO2 nanoparticles  were synthesized by hydrothermal method. These TiO2 NPs were deposited on FTO glasses by electrophoretic deposition  method in applied voltage of 5 V and EPD time of 2.5-10 min. Then TiO2 hollow spheres (HSs) were synthesized by sacrificed template method with Carbon Spheres as template and TTIP ...

متن کامل

Simple Synthesis of In2S3 Nanoparticles and their Application as Co-sensitizer to Improve Energy Conversion of DSSCs

This paper describes synthesis of In2S3 nanoparticles by sonochemistry method and their application to enhance solar cells performance which In2S3 nanoparticles work as co-sensitizer for the first time. In2S3 is a narrow band gap semiconductor (2 eV) with conduction band higher than TiO2. Therefore it can transfer electron to the conduction band of TiO2. The effect of different parameters such ...

متن کامل

Effect of large TiO2 Nanoparticles as Light Scatter in Matrix of Small Nanoparticles to Improve the Efficiency in Dye- Sensitized Solar Cell

In this study, we investigated the effect of using large TiO2 nanoparticles in the matrix of small nanoparticles to improve the performance of dye-sensitized solar cells (DSSCs), as light scatter to increase the light harvesting. The mixed powder was deposited by electrophoretic deposition (EPD) on FTO (F-SnO2 coated glass). It is shown that adding small quantity of larger...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017